The Memrowave

Designing the microwave of the future

Winston Todd (CpE)
Andy Gulick (CpE)
Darren Armstrong (EE)
Joseph Serritella (EE)

The Project Goals

- The Goal of the project is to analyze possible design solutions to create
 - Automated Microwave
 - Using Barcode scanning
 - WiFi
 - Stream lined touch screen interface
 - Eliminate user error in cooking
 - o Optimize Cooking through an online database

Requirements

- Developing a system that
 - o Simple
 - o Reusable
 - Long lasting
 - Works with local connection
 - Power efficient

Requirement	Constraint
Resolution LCD	480X272
Camera Frame Rate	24 Frames per second
LCD screen size	4"
GPIO pins on microcontroller	7 pins
Communication	I2C
Storage size	512MB
Max power consumption	1070W

Hardware Selections

• Selecting components to interface with microwave's subsystems.

User Interface/Control

- Beaglebone Black
- AM3358 Sitara ARM Cortex-A8
- 1 GHz
- 512MB DRAM
- Android 4.2.2 Jelly Bean
- Linux Kernel 3.2
- 5V, 460mA
- I2C master

Inter-Integrated Circuit (I2C)

- Computer bus
- Serial communication
- Half duplex
- Multi-master
- Up to 1008 nodes (10-bit addressing)
- Single-ended signal
- 0.1-5.0 Mbit/s

LCD Touchscreen

- 4DCAPE-43T
- 4.3" TFT LCD
- 480x272 resolution (portrait)
- Resistive touch
- 5V directly from BBB
- Dimensions: 4.74x3.15"

7-Segment LED Display

- MAX6958
- 4-digit, 9-segment LED display driver
- 16-pin PDIP
- 3V to 5.5V
- I2C slave

Microwave Interface/Control

- MSP430G2553 microcontroller
- 16MHz
- 16KB flash
- 1.8 3.6V, 330µA/MHz
- 20-pin plastic dual inline package (PDIP)
- I2C, GPIO
- I2C slave

Microwave Interface/Control

Camera

- Logitech HD C270
- Video capture up to 1280 x 720 pixels
- Photo up to 3.0 megapixels
- USB

Wireless

- UWN200
- MediaTek MT7601 (Ralink 7601)
- 2.4- 2.4835GHz, 802.11b/g/n
- 4" antenna
- USB

Boards

Software Breakdown

Selecting components to interface with microwave's subsystems.

Home Screen

- Act as Launcher replacement
 - o Home button will bring up this screen
- Time Display
- 4 Options
 - Scan barcode
 - View favorite products
 - Open manual cook screen
 - Change Memrowave settings

Barcode Scanner

- Barcode scanning accomplished using Zxing barcode library
- Align barcode in the viewfinder to automatically scan and decode it
- Scan result used to search for matching products

Product Database

- A local SQLite3 database will be used to store product information, including:
 - Product name
 - o Product description
 - Location of product image
 - o Cooking steps, with
 - · Step description
 - Power level
 - · Cook time

Product Description

- Displayed after a successful barcode scan, if a matching product can be found
- The user can modify the power level and cook time
- User can cook the product from this screen

Product Search

- Lists all products with matching barcode
- Search locations:
 - Favorites
 - Local database
 - Web database
- Selecting a product will bring up the Product Description screen, allowing the user to cook the product

Favorites

- A table in the database will be used to store a list of favorite products
- Allows quick access to frequently used products
- Quicker than scanning a barcode

Notifications

- Remotely notify the user when the Memrowave is finished cooking
- Two options:
 - o SMS notifications
 - Simple
 - Supports older phones
 - Push notifications
 - · Requires a custom app on the phone
 - Android-only for now

User Profiles

- Store user-specific settings:
 - Username
 - Favorites list
 - Phone number for SMS notifications
 - Push notification settings

+ UserDatabase

+db: SQLiteDatabase

+instance: UserDatabase

+getUserList(): List<User>

+addUser(user): void

+getUser(id : int)

+deleteUser(id : int) : void

+modifyUser(user): void

+getDatabase(): UserDatabase

+ User

+id:int

+username: String

+cellphone_numer : String

+send_notifications: boolean

+update(db : UserDatabase) : void

Manual Operation

- Some items don't have convenient barcodes
- Some users will prefer complete control over microwave operation
- Allow the user to manually set cook time and power level like a standard microwave

Cook Screen

- Displayed while the Memrowave is cooking
- Must remain on the screen to continue cooking
 - Avoid situations where the user cannot stop the microwave
- Three main operations
 - o Pause
 - o Cancel
 - Add 30 seconds

New Product

- User can manually add product entries
- Built in camera can be used to take a picture of the product and scan the barcode
- User will manually enter cook time and power level
- Product will be saved to the local database

Web Database

- Implement a web database of products, so users will not have to manually enter product information
- Product settings can be cached to the Memrowave's local database
- Using MongoDB for the database
- Node.js + Express for the web server
- REST API will deliver JSON-formatted data

Powering systems

Powering DC elements in the Memrowave

Structure

DC Components

- Beagle Bone Black
 - LCD Display
 - WIFI Module
 - Camera
- 7 Segment Display

AC Components

- Internal Light
- Turntable Motor
 - Cooling Fan
- Magnetron Transformer

AC Power

- All components require 120 V. Reuse of the most of the microwave's original wiring layout. Adjustments will be made to door switches and magnetron relay.

DC Components

Component	Operating Voltage	Max Operating Current(mA)	Power(W)
BeagleBone Black	5	500	2.5
LCD Display	5	250	1.25
WIFI Module	5	500	2.5
Camera	5	500	2.5
7 Segment Display	5	600	3
MSP430	3.3	500	1.65
•		Total Power	13.4

DC Power Supply

- Maximum of 15 watts of power delivery Switching Regulator Design Minimize use of microwave real estate

Switching Regulator Design

- Maximum current requirement of 3 A.
- Allows for a more compact design.
- More efficient, 80-95%.
- Requires more components.
- EMI filtering/RF Considerations.

Resonant Controller: UCC28710

- Built by T.I.
- Constant voltage and constant current regulation.
- Over-voltage and Over-current Protection functions.
- At least 78% efficiency for our system.

Schematic

Power PCB

- Eagle 6.5 Pro by CadSoft
- Proposed Layout by TI
- Compact as possible with acceptable robustness

Considerations

- Placing components as close to resonant controller's pins as possible.
- Avoid mounting semiconductors under magnetics.
- Placement and Shielding are key to proper operation.

Electrical Hardware

- The microwave's new power source
 - Powering the Memrowave
- Use of relays to control microwave's electronics
- Circuit Design
- Printed Circuit Board

Controlling AC elements

- The Memrowave functions normally
 - o Components are only on when needed
 - Power distributed effectively
 - Safe operation
- Make use of switches
 - Reuse mechanical switches for the ovens door
 - Order Relays to control power
 - Relay control via MCU

Door Switch

- The mechanical switch in the door will be reused
 - o This will always for the light to be switched on when the door is open
 - This switch will also protect a user from the magnetron when the door is open
- Provides the user with familiar interfaces

Relays

- The Memrowave's operation will using two Solid State Relays
 - Known as a SSR
- Lower current components will be switch via Solid State Relay 8A
 - o These elements are:
 - Light
 - Fan
 - Turntable

Magnetron's Relay

- The magnetron's transformer draws a 9Amp current
 - Switching requires a more robust relay
- A 40Amp relay will be mounted to the microwave to solve this issue
 - o This relay won't fit on the PCB

Control system

- In order to switch the relays we will utilize an MSP430 microcontroller
 - The MSP430 will be mounted to the PCB
 - The GPIO pins will output an on and off signal
- The MSP430 output sufficient current to efficiently when operating relays
 - This is done through use of transistors
 - Make use of Three GPIO pins
 - Magnetron
 - Fan/Light/Turntable
 - 7-segment display

Power Levels

- Magnetron is required to operate at different power levels
 - o For simplicity levels 1-10
- Since the magnetron is on its own pin we can control power through pulse width modulation
 - Coded into the microcontroller.

PCB Schematic Ť. 5V 4 李奎 RELAY-SOLIDSTATEPTH M02POLAR GND 8 04 R11 ₩₩ GND MSP430 G2 XX3 DGND 10/49 VDD 3V8 VDD_3V3 PLACTING SUCCESSION SHOWS AND ADDRESS OF SUCCESSION SUC XXX PROGRAMME. GPIO_38 GPIO_39 P8 6 P8 10 P8 10 P8 12 P8 14 P8 16 P8 20 P8 22 P8 24 P8 28 P8 32 P8 32 P8 34 P8 36 P8 36 P8 40 P8 42 P8 44 VDD_5V VDD_5V PLACTER A TRANSPORTE TRANSPORT FOR A VOICE 2007/96/2 GPIO 34 GPIO 35 GND RESTREE PROFESSION ASSOCIA TEND WHITE GPIO 66 GPIO_67 \$15.5V \$15.5V \$15.5V \$17.5V \$1 NAMES OF THE PARTY GPIO 69 GPIO_68 GPI0_45 GPI0_44 7 8 9 10 11 12 GPIO_26 GPIO_46 GPIO_65 нциперидрериству.... выстартивного, GPIO_23 GPIO_47 RALITERA вадительник графит NAME THE RES ражитива GPI0_27 GPIO_63 GPIO_37 I2C2_SDA GPIO_2 GPIO_15 RADITMAR PROVINGS. GPI0_22 18 17 16 15 P9.21 P9.23 P9.25 P9.27 P9.31 P9.33 P9.35 P9.37 P9.39 P9.41 P9.43 ENL/THEA PRINCIPAL E GPI0_62 GPIO_49 GPIO_117 GPIO_125 GPIO_121 GPI0_33 PROTOGA PRACTICAL III GPIO_36 GPI0_14 RALD/TRALS PAS/TALE GPIO_32 GPI0_61 GPIO_123 RIJUTRIJA PRACTICE. GPIO_86 GPIO_88 GPI0_122 GPIO_87 GPIO_89 GPIO_120 U\$2 GPIO_11 GPIO_81 VDD_ADC GPIO_10 GNDA ADC GPIO_9 AIN4 AIN5 GPIO_8 GPIO_78 GPIO_76 GPI0_80 AIN6 AIN3 GPIO 79 ALN2 P9.40 P9.42 P9.44 P8.39 P8.41 P8.43 AIND AIN1 GPIO_77 GPIO_75 GPIO_73 GPIO_71 GPIO 20 GPIO_74 GPIO_72 GPIO 7 DGND P9.45 GPIO_70 GND DIGO >CLK LOAD .01 DIN DIG5 14. لهيا لهجا -WW-ISET **4**D1G7 BSS138 _BSS138 SEGA SEGB SEGD SEGE vec SEGF GND Ω3 GND SEGDP MAX7219CNG

Control PCB

Administration

- Budget
- Progress
- Labor Distribution
- Challenges
- Milestones

Budget

ITEM	Estimated Cost	Actual Cost
Beagle Bone Black	\$50	\$50
Camera	\$40	\$40
LCD Screen	\$100	\$60
Microwave	\$250	\$ 0
Power supply	\$10	\$25
Microcontroller	\$11	\$0
Relays and Misc.	\$10	\$27
PCB fabrication	\$60	\$60
WIFI	\$25	\$14.99
Total	\$556	\$276.99

Progress

Distribution

	Power/PCB management	User interface/App	Control system/PCB	Software
Winston		X		X
Andy		X		Χ
Darren	X			
Joseph			Χ	

Challenges

- First time working with PCB designs
- Inexperience with eagle schematic
- Limited space for elements
- Integrating Wi-Fi and camera with Android hardware abstraction layer.
- Transformer Design

Milestones

- Test control circuits on bread board
- Test switching regulator on bread board
- Order PCB

Questions?